Near Optimal Exploration-Exploitation in Non-Communicating Markov Decision Processes

Artificial Intelligence Research

Ronan Fruit (Inria), Matteo Pirotta (Inria), Alessandro Lazaric (Fair)

Motivations

- ► Learning in an unknown environment means to balance
 - Exploration
- Exploitation
- ► All theoretically-grounded approaches requires prior knowledge
 - This information is hard to get!
 - Limit their applicability
- ► This is about learning without prior knowledge!!!

Online Learning in MDPs

- ► Markov Decision Process $M = \{S, A, r, p\}$
- states: $S = S^{C} \cup S^{T}$
- **→communicating** set: $\forall s, s' \in S^{\mathsf{C}}, \ \exists \pi : \mathbb{P}^{\pi}(s \to s') > 0$ • actions: $A = (A_s)_{s \in S}$
- mean rewards: r(s, a) \rightarrow transient set: $S^{\mathtt{C}} \cap S^{\mathtt{T}} = \emptyset$
- transition probabilities: p(s'|s,a)
- Possible next states: $\Gamma^{\mathcal{S}} = \max_{s \in \mathcal{S}, a \in \mathcal{A}_s} \|p(\cdot|s, a)\|_0$
- **▶** Optimality criterion: long-term average reward

For any policy $\pi \in \Pi^{SR}(M)$ starting from $s \in \mathcal{S}$:

GAIN:
$$\boldsymbol{g}_{\boldsymbol{M}}^{\boldsymbol{\pi}}(\boldsymbol{s}) := \lim_{T \to +\infty} \mathbb{E} \left[\frac{1}{T} \sum_{t=1}^{T} r(s_t, a_t) \right]$$

BIAS: $\boldsymbol{h}_{\boldsymbol{M}}^{\boldsymbol{\pi}}(\boldsymbol{s}) := C - \lim_{T \to +\infty} \mathbb{E} \left[\sum_{t=1}^{T} \left(r(s_t, a_t) - g_{\boldsymbol{M}}^{\boldsymbol{\pi}}(s_t) \right) \right]$

In weakly communicating MDPs:

any **optimal policy** $\pi^* \in \arg \max\{g^{\pi}(s)\}$ has **constant** gain

► Learning problem: cumulative regret minimization

The true M^st is unknown, thus it is g^*

$$\Delta(\mathfrak{A}, T) = Tg^* - \sum_{t=1}^{T} r_t(s_t, a_t)$$

Asm. 1 The initial state $s_1 \in S^{\mathbb{C}}$

▶ Diameter and Span: [Jaksch et al. 2010; Bartlett and Tewari, 2009]

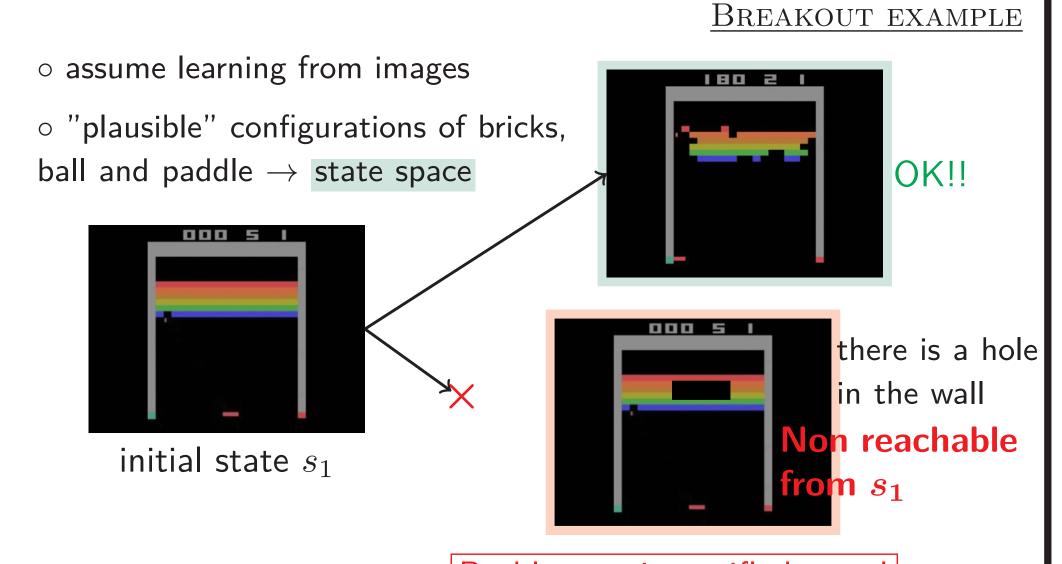
$$D^{\mathcal{S}} = \max_{s,s' \in \mathcal{S}} \left\{ \min_{\pi: \mathcal{S} \to \mathcal{P}(\mathcal{A})} \mathbb{E}_{\pi} \left[T(s') \middle| s \right] \right\}$$

- $sp_{\mathcal{S}} \{h^*\} = \max_{s \in \mathcal{S}} \{h^*(s)\} \min_{s \in \mathcal{S}} \{h^*(s)\}$
- D depends on all policies (global property) • $sp_{\mathcal{S}}\{h^*\}$ on only π^*
- $ullet \; sp_{\mathcal{S}}\left\{h^*
 ight\} \leq D \; ext{(always)}$

In weakly communicating MDPs $D=\infty$ but $sp_{\mathcal{S}}\{h^*\}\leq \infty$

Prior Knowledge & Misspecified states

- UCRL and OPT-PSRL assume communicating MDPs \Rightarrow all states are reachable
 - regret: $\widetilde{O}\left(D^{\mathcal{S}}\sqrt{\Gamma^{\mathcal{S}}SAT}\right) / \widetilde{O}\left(D^{\mathcal{S}}\sqrt{SAT}\right)$
- reasonable! but rarely verified in practice



- Problem: misspecified state!
- UCRL and OPT-PSRL → linear regret

• In weakly communicating or misspecified problems $(D=+\infty)$

• REGAL.C and SCAL exploits the knowledge $sp_{\mathcal{S}}\{h_{M^*}^*\} \leq H$ implicitly "removes" non-reachable states able to learn in weakly comm. MDPs regret: $\widetilde{O}\left(H\sqrt{\Gamma^{\mathcal{S}}SAT}\right)$

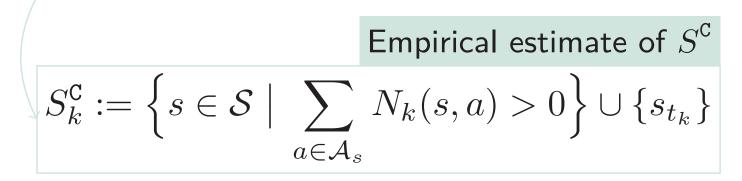
 \triangle knowing H not easier than designing well-specified states

*similar assumptions in Bayesian regret

Truncated Upper-Confidence for Reinforcement Learning (Tuckl)

Plain OFU (e.g., UCRL) executed on

- \circ S and $S^{\mathtt{T}} \neq \emptyset$ is over-exploring (*linear regret*)
- $\circ S_k^{\mathsf{C}} \subseteq S^{\mathsf{C}}$ may under-exploration (linear regret)



 s_{t_k} : starting state of episode k

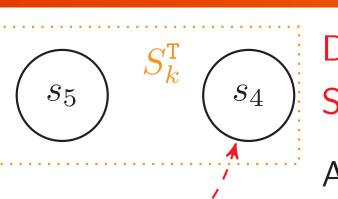
TUCRL learns in weakly communicating or misspecified problems WITHOUT PRIOR KNOWLEDGE

Why does Tucrl work?

- reconsiders transitions periodically (i.e., decrease ρ_k) ⇒ avoid under-exploration
- exploits Bernstein confidence interval:

$$\beta_{p,k}^{sas'} = \sqrt{\frac{\alpha \sigma_k^2(s'|s,a)}{N_k(s,a)} + \frac{\beta}{N_k(s,a)}}$$

- $-(s,a) \rightarrow s'$ not observed $\Rightarrow \sigma_k^2 = 0$ and $\widehat{p}_k = 0$
- $\Rightarrow \beta/N_k(s,a) < \rho_k$ - fast shrinking $\approx O(1/N_k(s,a))$
- we set $\rho_k = O(SA/t_k)$ equivalent to removing transitions s.t.: $N_k(s,a) > \sqrt{t_k/SA} \Rightarrow \widetilde{p}(s'|s,a) = 0, \forall s' \in S_k^{\mathsf{T}}$



Does this transition $s_1 \to s_4$ exists? Is $s_4 \in S_k^T$? Should be enabled it at episode k? Explore or not?

At episode k we know:

$$\widehat{p}_k(s'|s,a) \quad \text{and} \quad |\widetilde{p}(s'|s,a) - \widehat{p}(s'|s,a)| \leq \beta_{p,k}^{sas'}$$
 empirical mean
$$\text{confidence interval}$$

TUCRL idea:

"guess" a lower bound ho_k to the trans. probabilities $\widehat{p}(s'|s,a) + \beta_{p,k}^{sas'} < \rho_k \Rightarrow s \to s' \text{ FORBIDDEN }$ Maximum probability given conf. interval

 \triangle $(\rho_k)_k$ should be non-increasing!!

TUCRL ALGORITHM

For episode $k = 1, 2, \ldots$

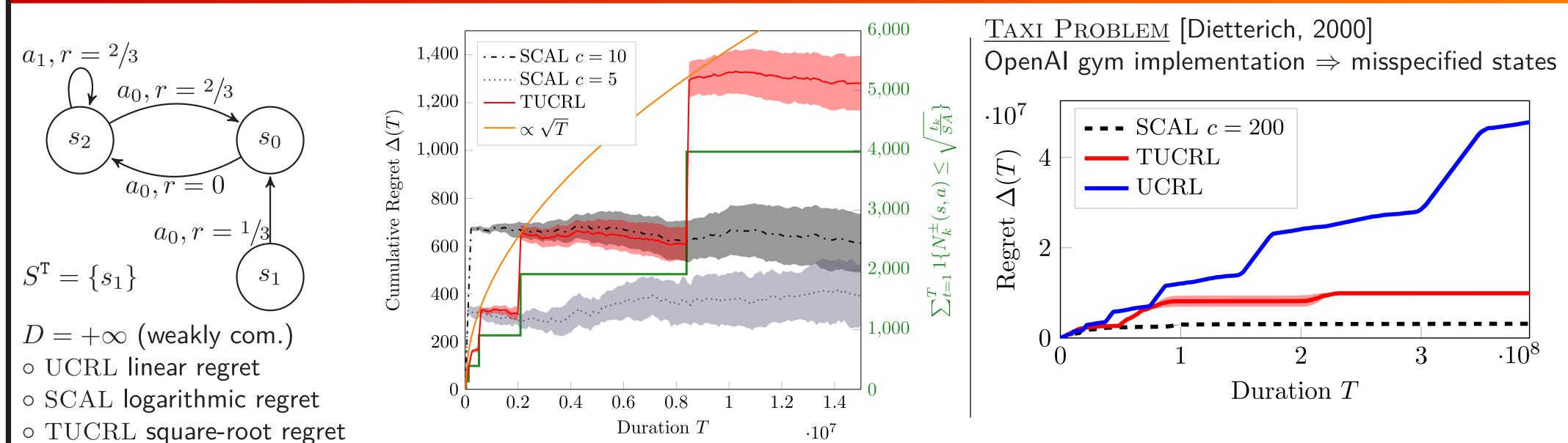
Confidence set: TUCRL builds $\mathcal{M}_k = \{M = (\mathcal{S}, \mathcal{A}, \widetilde{r}, \widetilde{p}) : \}$ $\widetilde{r}(s,a) \in B_{r,k}(s,a), \ \widetilde{p}(\cdot|s,a) \in B_{p,k}(s,a)$ with:

$$B_{p,k}(s,a) = \{ \widetilde{p}(\cdot|s,a) : \|\widetilde{p}(\cdot|s,a) - \widehat{p}(\cdot|s,a)\|_1 \le \sum_{s'} \beta_{p,k}^{sas'} \}$$

$$\cap \{ \widetilde{p}(\cdot|s,a) : N_k(s,a) > \sqrt{t_k/s_A} \Rightarrow \forall s' \in S_k^{\mathsf{T}}, \ \widetilde{p}(s'|s,a) = 0 \}$$

- 2. Planning: TUCRL solves $(\widetilde{M}_k, \widetilde{\pi}_k) = \arg\max\{g_M^{\pi}\}$
- 3. **Execution:** of policy $\widetilde{\pi}_k$ in the true MDP

Numerical Experiments



Regret of Tucrl

 $\Delta(\text{TUCRL}, T) = \widetilde{O}\left(D^{\text{c}}\sqrt{\Gamma^{\text{c}}S^{\text{c}}AT} + \left(D^{\text{c}}\right)^{2}S^{3}A\right)$

- Adaptability to communicating part $D^{\mathtt{C}}:=D^{S^{\mathtt{c}}},\ \Gamma^{\mathtt{C}}:=\Gamma^{S^{\mathtt{c}}}$ and $S^{\mathtt{C}}$
- Regret due to the early stage where TUCRL suffers linear regret \leftarrow

If M^* is communicating

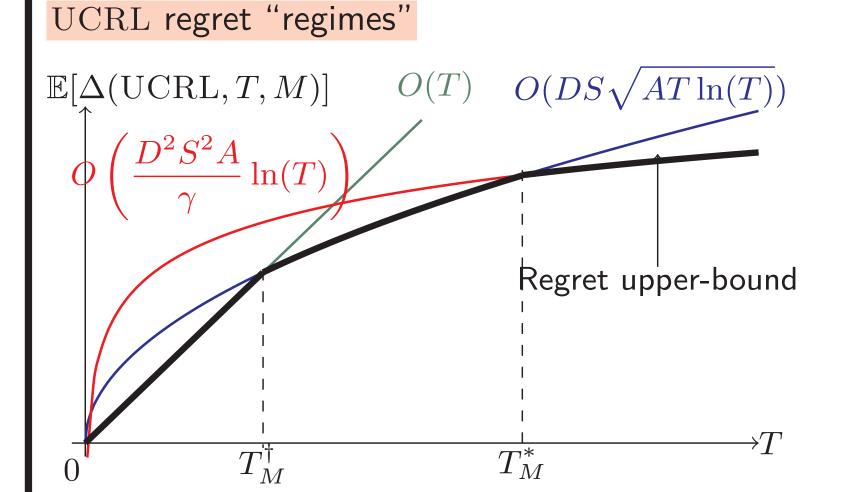
First term: same as UCRL

Second term: bigger than UCRL by a factor S^{c}/Γ^{c}

References

- Jaksch, Ortner, and Auer. Near-optimal regret bounds for reinforcement learning. Journal of Machine Learning Research, 2010.
- Bartlett and Tewari. REGAL: A regularization based algorithm for reinforcement learning in weakly communicating MDPs. In UAI 2009. • Agrawal and Jia. Optimistic posterior sampling for reinforcement learn-
- ing: worst-case regret bounds. In NIPS 2017, 2017. • Fruit, Pirotta, Lazaric and Ortner. Efficient Bias-Span-Constrained Exploration-Exploitation in Reinforcement Learning. In ICML 2018, 2018.
- Dietterich. Hierarchical reinforcement learning with the MAXQ value function decomposition. J. Artif. Intell. Res., 13:227-303, 2000.

Exploration-Exploitation Dilemma with infinite diameter



efficient algorithm: time T_M^{\dagger} to achieve sublinear regret is polynomial in the parameters of the MDP

In communicating MDPs, UCRL achieves sublinear regret in $T_M^{\dagger} = O\left((D^{\mathcal{S}})^2 \Gamma^{\mathcal{S}} SA\right)$ ⇒ efficient algorithm

Impossibility result

Without prior knowledge, any efficient learning algorithm must satisfy $T_M^* = +\infty$ when M has infinite diameter (i.e., it cannot achieve logarithmic regret)

No logarithmic regret without prior knowledge!

